IJMB 2025 A LEVEL MATHEMATICS PAPER 1

IJMB 2025 A LEVEL MATHEMATICS PAPER 1

IJMB 2025 A LEVEL MATHEMATICS PAPER 1

QUESTIONS BELOW

IJMB 2025 A LEVEL MATHEMATICS PAPER 1
IJMB 2026 A LEVEL MATHEMATICS PAPER 1

IJMB 2025 A LEVEL MATHEMATICS PAPER 1

 

SOLUTIONS BELOW

NUMBER 1

IJMB 2025 A LEVEL MATHEMATICS PAPER 1

NUMBER 2

NUMBER 3

IJMB 2025 A LEVEL MATHEMATICS PAPER 1

NUMBER 4

IJMB 2025 A LEVEL MATHEMATICS PAPER 1 PAST QUESTION

NUMBER 5

IJMB 2026 A LEVEL MATHEMATICS PAPER 1

NUMBER 6

 

NUMBER 7

IJMB RUNZ

NUMBER 8

 

NUMBER 9

IJMB 2025 A LEVEL MATHEMATICS PAPER 1 IJMB 2025 A LEVEL MATHEMATICS PAPER 1

NUMBER 10

*NUMBER 11a*

sin(A+B)
tan(A+B)=————–
cos(A+B)

sinAcosB+sinBcosA
“””=———————————
cosAcosB–sinAsinB

*Divide through by cosAcosB*

sinAcosB+sinBcosA
——————————–
cosAcosB
“””=———————————
cosAcosB–sinAsinB
————————————
cosAcosB

tanA+tanB
“””=——————-
1–tanAtanB

 

11B

 

*To express 12sinx–5cosx in terms of Rsin(x–α)*

Rsin(x–α)=R(sinxcosα–sinαcosx)

”’=Rsinxcosα–Rsinαcosx

Comparing we have

Rsinxcosα=12sinx……(1)

Rsinαcosx=5cosx…….(2)

*From equ(1)*

R ~sinx~ cosα=12 ~sinx~

Rcosα=12………(3)

*From equ(2)*

Rsinα ~cosx~=5 ~cosx~

Rsinα=5……….(4)

*Divide equ(4) by (3)*

tanα=⁵/₁₂

α=tan⁻¹(⁵/₁₂)

α≈22.62

To find R we have

R=√12²+5²

R=√144+25

R=√169

R=13

*Hence we have*

13sin(x–22.62)

To solve 12sinx–5cosx=13

13sin(x–22.62)=13

sin(x–22.62)=1

(x–22.62)=sin⁻¹1

(x–22.62)=90°

Using sin function

x=θ+180n°,n=0,1,2……

*When n=0 we have*

(x–22.62)=90+180•0

x–22.62=90

x=90+22.62

x=112.62°

*When n=1*

(x–22.62)=90+180•1

x–22.62=90+180

x–22.62=270

x=270+22.62

x=292.62°

*Hence x=(112.62°,292.62°)*